Polyurethane what is it?

MojoSac.com uses Polyurethane foam, so what is Polyurethane?

Polyurethane, (commonly abbreviated PU,) is any polymer consisting of a chain of organic units joined by urethane links. Polyurethane polymers are formed by reacting a monomer containing at least two isocyanate functional groups with another monomer containing at least two alcohol groups in the presence of a catalyst.

generalized polyurethane reaction
generalized polyurethane reaction

Polyurethanes are in the class of compounds called reaction polymers, which include epoxies, unsaturated polyesters, and phenolics.[1][2][3][4][5] A urethane linkage is produced by reacting an isocyanate group, -N=C=O with a hydroxyl (alcohol) group, -OH. Polyurethanes are produced by the polyaddition reaction of a polyisocyanate with a polyalcohol (polyol) in the presence of a catalyst and other additives. In this case, a polyisocyanate is a molecule with two or more isocyanate functional groups, R-(N=C=O)n ≥ 2 and a polyol is a molecule with two or more hydroxyl functional groups, R’-(OH)n ≥ 2. The reaction product is a polymer containing the urethane linkage, -RNHCOOR’-. Isocyanates will react with any molecule that contains an active hydrogen. Importantly, isocyanates react with water to form a urea linkage and carbon dioxide gas; they also react with polyetheramines to form polyureas. Commercially, polyurethanes are produced by reacting a liquid isocyanate with a liquid blend of polyols, catalyst, and other additives. These two components are referred to as a polyurethane system, or simply a system. The isocyanate is commonly referred to in North America as the ‘A-side’ or just the ‘iso’. The blend of polyols and other additives is commonly referred to as the ‘B-side’ or as the ‘poly’. This mixture might also be called a ‘resin’ or ‘resin blend’. In Europe the meanings for ‘A-side’ and ‘B-side’ are reversed. Resin blend additives may include chain extenders, cross linkers, surfactants, flame retardants, blowing agents, pigments, and fillers.

The first essential component of a polyurethane polymer is the isocyanate. Molecules that contain two isocyanate groups are called diisocyanates. These molecules are also referred to as monomers or monomer units, since they themselves are used to produce polymeric isocyanates that contain three or more isocyanate functional groups. Isocyanates can be classed as aromatic, such as diphenylmethane diisocyanate (MDI) or toluene diisocyanate (TDI); or aliphatic, such as hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI). An example of a polymeric isocyanate is polymeric diphenylmethane diisocyanate, which is a blend of molecules with two-, three-, and four- or more isocyanate groups, with an average functionality of 2.7. Isocyanates can be further modified by partially reacting them with a polyol to form a prepolymer. A quasi-prepolymer is formed when the stoichiometric ratio of isocyanate to hydroxyl groups is greater than 2:1. A true prepolymer is formed when the stoichiometric ratio is equal to 2:1. Important characteristics of isocyanates are their molecular backbone, % NCO content, functionality, and viscosity.

The second essential component of a polyurethane polymer is the polyol. Molecules that contain two hydroxyl groups are called diols, those with three hydroxyl groups are called triols, et cetera. In practice, polyols are distinguished from short chain or low-molecular weight glycol chain extenders and cross linkers such as ethylene glycol (EG), 1,4-butanediol (BDO), diethylene glycol (DEG), glycerine, and trimethylol propane (TMP). Polyols are polymers in their own right. They are formed by base-catalyzed addition of propylene oxide (PO), ethylene oxide (EO) onto a hydroxyl or amine containing initiator, or by polyesterification of a di-acid, such as adipic acid, with glycols, such as ethylene glycol or dipropylene glycol (DPG). Polyols extended with PO or EO are polyether polyols. Polyols formed by polyesterification are polyester polyols. The choice of initiator, extender, and molecular weight of the polyol greatly affect its physical state, and the physical properties of the polyurethane polymer. Important characteristics of polyols are their molecular backbone, initiator, molecular weight, % primary hydroxyl groups, functionality, and viscosity.

PU reaction mechanism catalyzed by a tertiary amine
reaction meachanism
carbon dioxide gas formed by reacting water and isocyanate
water isocyanate reaction

The polymerization reaction is catalyzed by tertiary amines, such as dimethylcyclohexylamine, and organometallic compounds, such as dibutyltin dilaurate or bismuth octanoate. Furthermore, catalysts can be chosen based on whether they favor the urethane (gel) reaction, such as 1,4-diazabicyclo[2.2.2]octane (also called DABCO or TEDA), or the urea (blow) reaction, such as bis-(2-dimethylaminoethyl)ether, or specifically drive the isocyanate trimerization reaction, such as potassium octoate.

One of the most desirable attributes of polyurethanes is their ability to be turned into foam. Blowing agents such as water, certain halocarbons such as HFC-245fa (1,1,1,3,3-pentafluoropropane) and HFC-134a (1,1,1,2-tetrafluoroethane), and hydrocarbons such as n-pentane, can be incorporated into the poly side or added as an auxiliary stream. Water reacts with the isocyanate to create carbon dioxide gas, which fills and expands cells created during the mixing process. The reaction is a three step process. A water molecule reacts with an isocyanate group to form a carbamic acid. Carbamic acids are unstable, and decompose forming carbon dioxide and an amine. The amine reacts with more isocyanate to give a substituted urea. Water has a very low molecular weight, so even though the weight percent of water may be small, the molar proportion of water may be high and considerable amounts of urea produced. The urea is not very soluble in the reaction mixture and tends to form separate “hard segment” phases consisting mostly of polyurea. The concentration and organization of these polyurea phases can have a significant impact on the properties of the polyurethane foam.[6] Halocarbons and hydrocarbons are chosen such that they have boiling points at or near room temperature. Since the polymerization reaction is exothermic, these blowing agents volatilize into a gas during the reaction process. They fill and expand the cellular polymer matrix, creating a foam. It is important to know that the blowing gas does not create the cells of a foam. Rather, foam cells are a result of blowing gas diffusing into bubbles that are nucleated or stirred into the system at the time of mixing. In fact, high density microcellular foams can be formed without the addition of blowing agents by mechanically frothing or nucleating the polyol component prior to use.

Surfactants are used to modify the characteristics of the polymer during the foaming process. They are used to emulsify the liquid components, regulate cell size, and stabilize the cell structure to prevent collapse and surface defects. Rigid foam surfactants are designed to produce very fine cells and a very high closed cell content. Flexible foam surfactants are designed to stabilize the reaction mass while at the same time maximizing open cell content to prevent the foam from shrinking. The need for surfactant can be affected by choice of isocyanate, polyol, component compatibility, system reactivity, process conditions and equipment, tooling, part shape, and shot weight.

(see wikipedia on polyurethane)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: